home *** CD-ROM | disk | FTP | other *** search
- ;;;"cring.scm" Extend Scheme numerics to any commutative ring.
- ;Copyright (C) 1997, 1998 Aubrey Jaffer
- ;
- ;Permission to copy this software, to redistribute it, and to use it
- ;for any purpose is granted, subject to the following restrictions and
- ;understandings.
- ;
- ;1. Any copy made of this software must include this copyright notice
- ;in full.
- ;
- ;2. I have made no warrantee or representation that the operation of
- ;this software will be error-free, and I am under no obligation to
- ;provide any services, by way of maintenance, update, or otherwise.
- ;
- ;3. In conjunction with products arising from the use of this
- ;material, there shall be no use of my name in any advertising,
- ;promotional, or sales literature without prior written consent in
- ;each case.
-
- (require 'common-list-functions)
- (require 'relational-database)
- (require 'database-utilities)
- (require 'sort)
-
- (define cring:db (create-database #f 'alist-table))
- (define (make-ruleset . rules)
- (define name #f)
- (cond ((and (not (null? rules)) (symbol? (car rules)))
- (set! name (car rules))
- (set! rules (cdr rules)))
- (else (set! name (gentemp))))
- (define-tables cring:db
- (list name
- '((op symbol)
- (sub-op1 symbol)
- (sub-op2 symbol))
- '((reduction expression))
- rules))
- (let ((table ((cring:db 'open-table) name #t)))
- (and table
- (list (table 'get 'reduction)
- (table 'row:update)
- table))))
- (define *ruleset* (make-ruleset 'default))
- (define (cring:define-rule . args)
- (if *ruleset*
- ((cadr *ruleset*) args)
- (slib:warn "No ruleset in *ruleset*")))
-
- (define (combined-rulesets . rulesets)
- (define name #f)
- (cond ((symbol? (car rulesets))
- (set! name (car rulesets))
- (set! rulesets (cdr rulesets)))
- (else (set! name (gentemp))))
- (apply make-ruleset name
- (apply append
- (map (lambda (ruleset) (((caddr ruleset) 'row:retrieve*)))
- rulesets))))
-
- ;;; Distribute * over + (and -)
- (define distribute*
- (make-ruleset
- 'distribute*
- `(* + identity
- ,(lambda (exp1 exp2)
- ;;(print 'distributing '* '+ exp1 exp2 '==>)
- (apply + (map (lambda (trm) (* trm exp2)) (cdr exp1)))))
- `(* - identity
- ,(lambda (exp1 exp2)
- ;;(print 'distributing '* '- exp1 exp2 '==>)
- (apply - (map (lambda (trm) (* trm exp2)) (cdr exp1)))))))
-
- ;;; Distribute / over + (and -)
- (define distribute/
- (make-ruleset
- 'distribute/
- `(/ + identity
- ,(lambda (exp1 exp2)
- ;;(print 'distributing '/ '+ exp1 exp2 '==>)
- (apply + (map (lambda (trm) (/ trm exp2)) (cdr exp1)))))
- `(/ - identity
- ,(lambda (exp1 exp2)
- ;;(print 'distributing '/ '- exp1 exp2 '==>)
- (apply - (map (lambda (trm) (/ trm exp2)) (cdr exp1)))))))
-
- (define (symbol-alpha? sym)
- (char-alphabetic? (string-ref (symbol->string sym) 0)))
- (define (expression-< x y)
- (cond ((and (number? x) (number? y)) (> x y)) ;want negatives last
- ((number? x) #t)
- ((number? y) #f)
- ((and (symbol? x) (symbol? y))
- (cond ((eqv? (symbol-alpha? x) (symbol-alpha? y))
- (string<? (symbol->string x) (symbol->string y)))
- (else (symbol-alpha? x))))
- ((symbol? x) #t)
- ((symbol? y) #f)
- ((null? x) #t)
- ((null? y) #f)
- ((expression-< (car x) (car y)) #t)
- ((expression-< (car y) (car x)) #f)
- (else (expression-< (cdr x) (cdr y)))))
- (define (expression-sort seq) (sort! seq expression-<))
-
- (define number* *)
- (define number+ +)
- (define number- -)
- (define number/ /)
- (define number^ integer-expt)
- (define is-term-op? (lambda (term op) (and (pair? term) (eq? op (car term)))))
- ;;(define (sign x) (if (positive? x) 1 (if (negative? x) -1 0)))
- (define number0? zero?)
- (define (zero? x) (and (number? x) (number0? x)))
-
- ;; To convert to CR internal form, NUMBER-op all the `numbers' in the
- ;; argument list and remove them from the argument list. Collect the
- ;; remaining arguments into equivalence classes, keeping track of the
- ;; number of arguments in each class. The returned list is thus:
- ;; (<numeric> (<expression1> . <exp1>) ...)
-
- ;;; Converts * argument list to CR internal form
- (define (cr*-args->fcts args)
- ;;(print (cons 'cr*-args->fcts args) '==>)
- (let loop ((args args) (pow 1) (nums 1) (arg.exps '()))
- ;;(print (list 'loop args pow nums denoms arg.exps) '==>)
- (cond ((null? args) (cons nums arg.exps))
- ((number? (car args))
- (let ((num^pow (number^ (car args) (abs pow))))
- (if (negative? pow)
- (loop (cdr args) pow (number/ (number* num^pow nums))
- arg.exps)
- (loop (cdr args) pow (number* num^pow nums) arg.exps))))
- ;; Associative Rule
- ((is-term-op? (car args) '*) (loop (append (cdar args) (cdr args))
- pow nums arg.exps))
- ;; Do singlet -
- ((and (is-term-op? (car args) '-) (= 2 (length (car args))))
- ;;(print 'got-here (car args))
- (set! arg.exps (loop (cdar args) pow (number- nums) arg.exps))
- (loop (cdr args) pow
- (car arg.exps)
- (cdr arg.exps)))
- ((and (is-term-op? (car args) '/) (= 2 (length (car args))))
- ;; Do singlet /
- ;;(print 'got-here=cr+ (car args))
- (set! arg.exps (loop (cdar args) (number- pow) nums arg.exps))
- (loop (cdr args) pow
- (car arg.exps)
- (cdr arg.exps)))
- ((is-term-op? (car args) '/)
- ;; Do multi-arg /
- ;;(print 'doing '/ (cddar args) (number- pow))
- (set! arg.exps
- (loop (cddar args) (number- pow) nums arg.exps))
- ;;(print 'finishing '/ (cons (cadar args) (cdr args)) pow)
- (loop (cons (cadar args) (cdr args))
- pow
- (car arg.exps)
- (cdr arg.exps)))
- ;; Pull out numeric exponents as powers
- ((and (is-term-op? (car args) '^)
- (= 3 (length (car args)))
- (number? (caddar args)))
- (set! arg.exps (loop (list (cadar args))
- (number* pow (caddar args))
- nums
- arg.exps))
- (loop (cdr args) pow (car arg.exps) (cdr arg.exps)))
- ;; combine with same terms
- ((assoc (car args) arg.exps)
- => (lambda (pair) (set-cdr! pair (number+ pow (cdr pair)))
- (loop (cdr args) pow nums arg.exps)))
- ;; Add new term to arg.exps
- (else (loop (cdr args) pow nums
- (cons (cons (car args) pow) arg.exps))))))
-
- ;;; Converts + argument list to CR internal form
- (define (cr+-args->trms args)
- (let loop ((args args) (cof 1) (numbers 0) (arg.exps '()))
- (cond ((null? args) (cons numbers arg.exps))
- ((number? (car args))
- (loop (cdr args)
- cof
- (number+ (number* (car args) cof) numbers)
- arg.exps))
- ;; Associative Rule
- ((is-term-op? (car args) '+) (loop (append (cdar args) (cdr args))
- cof
- numbers
- arg.exps))
- ;; Idempotent singlet *
- ((and (is-term-op? (car args) '*) (= 2 (length (car args))))
- (loop (cons (cadar args) (cdr args))
- cof
- numbers
- arg.exps))
- ((and (is-term-op? (car args) '-) (= 2 (length (car args))))
- ;; Do singlet -
- (set! arg.exps (loop (cdar args) (number- cof) numbers arg.exps))
- (loop (cdr args) cof (car arg.exps) (cdr arg.exps)))
- ;; Pull out numeric factors as coefficients
- ((and (is-term-op? (car args) '*) (some number? (cdar args)))
- ;;(print 'got-here (car args) '=> (cons '* (remove-if number? (cdar args))))
- (set! arg.exps
- (loop (list (cons '* (remove-if number? (cdar args))))
- (apply number* cof (remove-if-not number? (cdar args)))
- numbers
- arg.exps))
- (loop (cdr args) cof (car arg.exps) (cdr arg.exps)))
- ((is-term-op? (car args) '-)
- ;; Do multi-arg -
- (set! arg.exps (loop (cddar args) (number- cof) numbers arg.exps))
- (loop (cons (cadar args) (cdr args))
- cof
- (car arg.exps)
- (cdr arg.exps)))
- ;; combine with same terms
- ((assoc (car args) arg.exps)
- => (lambda (pair) (set-cdr! pair (number+ cof (cdr pair)))
- (loop (cdr args) cof numbers arg.exps)))
- ;; Add new term to arg.exps
- (else (loop (cdr args) cof numbers
- (cons (cons (car args) cof) arg.exps))))))
-
- ;;; Converts + or * internal form to Scheme expression
- (define (cr-terms->form op ident inv-op higher-op res.cofs)
- (define (negative-cof? fct.cof)
- (negative? (cdr fct.cof)))
- (define (finish exprs)
- (if (null? exprs) ident
- (if (null? (cdr exprs))
- (car exprs)
- (cons op exprs))))
- (define (do-terms sign fct.cofs)
- (expression-sort
- (map (lambda (fct.cof)
- (define cof (number* sign (cdr fct.cof)))
- (cond ((eqv? 1 cof) (car fct.cof))
- ((number? (car fct.cof)) (number* cof (car fct.cof)))
- ((is-term-op? (car fct.cof) higher-op)
- (if (eq? higher-op '^)
- (list '^ (cadar fct.cof) (* cof (caddar fct.cof)))
- (cons higher-op (cons cof (cdar fct.cof)))))
- ((eqv? -1 cof) (list inv-op (car fct.cof)))
- (else (list higher-op (car fct.cof) cof))))
- fct.cofs)))
- (let* ((all.cofs (remove-if (lambda (fct.cof)
- (or (zero? (cdr fct.cof))
- (eqv? ident (car fct.cof))))
- res.cofs))
- (cofs (map cdr all.cofs))
- (some-positive? (some positive? cofs)))
- ;;(print op 'positive? some-positive? 'negative? (some negative? cofs) all.cofs)
- (cond ((and some-positive? (some negative? cofs))
- (append (list inv-op
- (finish (do-terms
- 1 (remove-if negative-cof? all.cofs))))
- (do-terms -1 (remove-if-not negative-cof? all.cofs))))
- (some-positive? (finish (do-terms 1 all.cofs)))
- ((not (some negative? cofs)) ident)
- (else (list inv-op (finish (do-terms -1 all.cofs)))))))
-
- (define (* . args)
- (cond
- ((null? args) 1)
- ;;This next line is commented out so ^ will collapse numerical expressions.
- ;;((null? (cdr args)) (car args))
- (else
- (let ((in (cr*-args->fcts args)))
- (cond
- ((zero? (car in)) 0)
- (else
- (if (null? (cdr in))
- (set-cdr! in (list (cons 1 1))))
- (let* ((num #f)
- (ans (cr-terms->form
- '* 1 '/ '^
- (apply
- (lambda (numeric red.cofs res.cofs)
- (set! num numeric)
- (append
- ;;(list (cons (abs numeric) 1))
- red.cofs
- res.cofs))
- (cr1 '* number* '^ '/ (car in) (cdr in))))))
- (cond ((number0? (+ -1 num)) ans)
- ((number? ans) (number* num ans))
- ((number0? (+ 1 num))
- (if (and (list? ans) (= 2 (length ans)) (eq? '- (car ans)))
- (cadr ans)
- (list '- ans)))
- ((not (pair? ans)) (list '* num ans))
- (else
- (case (car ans)
- ((*) (append (list '* num) (cdr ans)))
- ((+) (apply + (map (lambda (mon) (* num mon)) (cdr ans))))
- ((-) (apply - (map (lambda (mon) (* num mon)) (cdr ans))))
- (else (list '* num ans))))))))))))
-
- (define (+ . args)
- (cond ((null? args) 0)
- ;;((null? (cdr args)) (car args))
- (else
- (let ((in (cr+-args->trms args)))
- (if (null? (cdr in))
- (car in)
- (cr-terms->form
- '+ 0 '- '*
- (apply (lambda (numeric red.cofs res.cofs)
- (append
- (list (if (and (number? numeric)
- (negative? numeric))
- (cons (abs numeric) -1)
- (cons numeric 1)))
- red.cofs
- res.cofs))
- (cr1 '+ number+ '* '- (car in) (cdr in)))))))))
-
- (define (- arg1 . args)
- (if (null? args)
- (if (number? arg1) (number- arg1)
- (* -1 arg1) ;(list '- arg1)
- )
- (+ arg1 (* -1 (apply + args)))))
-
- ;;(print `(/ ,arg1 ,@args) '=> )
- (define (/ arg1 . args)
- (if (null? args)
- (^ arg1 -1)
- (* arg1 (^ (apply * args) -1))))
-
- (define (^ arg1 arg2)
- (cond ((and (number? arg2) (integer? arg2))
- (* (list '^ arg1 arg2)))
- (else (list '^ arg1 arg2))))
-
- ;; TRY-EACH-PAIR-ONCE algorithm. I think this does the minimum
- ;; number of rule lookups given no information about how to sort
- ;; terms.
-
- ;; Pick equivalence classes one at a time and move them into the
- ;; result set of equivalence classes by searching for rules to
- ;; multiply an element of the chosen class by itself (if multiple) and
- ;; the element of each class already in the result group. Each
- ;; (multiplicative) term resulting from rule application would be put
- ;; in the result class, if that class exists; or put in an argument
- ;; class if not.
-
- (define (cr1 op number-op hop inv-op numeric in)
- (define red.pows '())
- (define res.pows '())
- (define (cring:apply-rule->terms exp1 exp2) ;(display op)
- (let ((ans (cring:apply-rule op exp1 exp2)))
- (cond ((not ans) #f)
- ((number? ans) (list ans))
- (else (list (cons ans 1))))))
- (define (cring:apply-inv-rule->terms exp1 exp2) ;(display inv-op)
- (let ((ans (cring:apply-rule inv-op exp1 exp2)))
- (cond ((not ans) #f)
- ((number? ans) (list ans))
- (else (list (cons ans 1))))))
- (let loop.arg.pow.s ((arg (caar in)) (pow (cdar in)) (arg.pows (cdr in)))
- (define (arg-loop arg.pows)
- (cond ((not (null? arg.pows))
- (loop.arg.pow.s (caar arg.pows) (cdar arg.pows) (cdr arg.pows)))
- (else (list numeric red.pows res.pows)))) ; Actually return!
- (define (merge-res tmp.pows multiplicity)
- (cond ((null? tmp.pows))
- ((number? (car tmp.pows))
- (do ((m (number+ -1 (abs multiplicity)) (number+ -1 m))
- (n numeric (number-op n (abs (car tmp.pows)))))
- ((negative? m) (set! numeric n)))
- (merge-res (cdr tmp.pows) multiplicity))
- ((or (assoc (car tmp.pows) res.pows)
- (assoc (car tmp.pows) arg.pows))
- => (lambda (pair)
- (set-cdr! pair (number+
- pow (number-op multiplicity (cdar tmp.pows))))
- (merge-res (cdr tmp.pows) multiplicity)))
- ((assoc (car tmp.pows) red.pows)
- => (lambda (pair)
- (set! arg.pows
- (cons (cons (caar tmp.pows)
- (number+
- (cdr pair)
- (number* multiplicity (cdar tmp.pows))))
- arg.pows))
- (set-cdr! pair 0)
- (merge-res (cdr tmp.pows) multiplicity)))
- (else (set! arg.pows
- (cons (cons (caar tmp.pows)
- (number* multiplicity (cdar tmp.pows)))
- arg.pows))
- (merge-res (cdr tmp.pows) multiplicity))))
- (define (try-fct.pow fct.pow)
- ;;(print 'try-fct.pow fct.pow op 'arg arg 'pow pow)
- (cond ((or (zero? (cdr fct.pow)) (number? (car fct.pow))) #f)
- ((not (and (number? pow) (number? (cdr fct.pow))
- (integer? pow) ;(integer? (cdr fct.pow))
- ))
- #f)
- ;;((zero? pow) (slib:error "Don't try exp-0 terms") #f)
- ;;((or (number? arg) (number? (car fct.pow)))
- ;; (slib:error 'found-number arg fct.pow) #f)
- ((and (positive? pow) (positive? (cdr fct.pow))
- (or (cring:apply-rule->terms arg (car fct.pow))
- (cring:apply-rule->terms (car fct.pow) arg)))
- => (lambda (terms)
- ;;(print op op terms)
- (let ((multiplicity (min pow (cdr fct.pow))))
- (set-cdr! fct.pow (number- (cdr fct.pow) multiplicity))
- (set! pow (number- pow multiplicity))
- (merge-res terms multiplicity))))
- ((and (negative? pow) (negative? (cdr fct.pow))
- (or (cring:apply-rule->terms arg (car fct.pow))
- (cring:apply-rule->terms (car fct.pow) arg)))
- => (lambda (terms)
- ;;(print inv-op inv-op terms)
- (let ((multiplicity (max pow (cdr fct.pow))))
- (set-cdr! fct.pow (number+ (cdr fct.pow) multiplicity))
- (set! pow (number+ pow multiplicity))
- (merge-res terms multiplicity))))
- ((and (positive? pow) (negative? (cdr fct.pow))
- (cring:apply-inv-rule->terms arg (car fct.pow)))
- => (lambda (terms)
- ;;(print op inv-op terms)
- (let ((multiplicity (min pow (number- (cdr fct.pow)))))
- (set-cdr! fct.pow (number+ (cdr fct.pow) multiplicity))
- (set! pow (number- pow multiplicity))
- (merge-res terms multiplicity))))
- ((and (negative? pow) (positive? (cdr fct.pow))
- (cring:apply-inv-rule->terms (car fct.pow) arg))
- => (lambda (terms)
- ;;(print inv-op op terms)
- (let ((multiplicity (max (number- pow) (cdr fct.pow))))
- (set-cdr! fct.pow (number- (cdr fct.pow) multiplicity))
- (set! pow (number+ pow multiplicity))
- (merge-res terms multiplicity))))
- (else #f)))
- ;;(print op numeric 'arg arg 'pow pow 'arg.pows arg.pows 'red.pows red.pows 'res.pows res.pows)
- ;;(trace arg-loop cring:apply-rule->terms merge-res try-fct.pow) (set! *qp-width* 333)
- (cond ((or (zero? pow) (eqv? 1 arg)) ;(number? arg) arg seems to always be 1
- (arg-loop arg.pows))
- ((assoc arg res.pows) => (lambda (pair)
- (set-cdr! pair (number+ pow (cdr pair)))
- (arg-loop arg.pows)))
- ((and (> (abs pow) 1) (cring:apply-rule->terms arg arg))
- => (lambda (terms)
- (merge-res terms (quotient pow 2))
- (if (odd? pow)
- (loop.arg.pow.s arg 1 arg.pows)
- (arg-loop arg.pows))))
- ((or (some try-fct.pow res.pows) (some try-fct.pow arg.pows))
- (loop.arg.pow.s arg pow arg.pows))
- (else (set! res.pows (cons (cons arg pow) res.pows))
- (arg-loop arg.pows)))))
-
- (define (cring:try-rule op sop1 sop2 exp1 exp2)
- (and *ruleset*
- (let ((rule ((car *ruleset*) op sop1 sop2)))
- (and rule (rule exp1 exp2)))))
-
- (define (cring:apply-rule op exp1 exp2)
- (and (pair? exp1)
- (or (and (pair? exp2)
- (cring:try-rule op (car exp1) (car exp2) exp1 exp2))
- (cring:try-rule op (car exp1) 'identity exp1 exp2))))
-
- ;;(begin (trace cr-terms->form) (set! *qp-width* 333))
-